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Abstract. Transfer-matrix techniques are used to extend the self-avoiding polygon 
generating function on the square lattice to terms in x46, corresponding to 46 step polygons. 
These techniques are then extended to apply to directed square lattices, such as the L and 
Manhattan lattice, and the self-avoiding polygon generating function to x48 is found for 
these lattices. 

Series analysis confirms that the ‘specific heat’ exponent (I = f  for the self-avoiding 
walk problem, and gives the following estimates for the connective constants: ~ ( s Q )  = 
2.638 155*0.000025, p(L)= 1.5657i0.0019 and p(Man.) = 1.7328i0.0005. Some 
evidence for a correction to scaling exponent A = 0.84 is found from square lattice series. 

1. Introduction 

In an earlier paper (Enting 1980) it was shown how generating function techniques 
could be used to extend the known polygon generating function series for the square 
lattice, and the series was obtained to x38. In this paper we ex’tend that calculation to 
x4,  and show how the method can be applied to directed lattices, such as the L lattice 
(a square lattice on which each step must be perpendicular to its predecessor) and the 
Manhattan lattice, in which adjacent rows (columns) have antiparallel directions, 
corresponding to the traffic pattern in Manhattan. These lattices are shown in figure 
1. The method and its extension are discussed in 0 2. 

0305-4470/85/061007+ 11 $02.25 @ 1985 The Institute of Physics 1007 
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These extended series are analysed in 5 3. For the square lattice in particular it 
has been possible to obtain a very accurate estimate of the connective constant, with 
an uncertainty of 1 part in lo5. For the L and Manhattan lattices less accurate estimates 
of the connective constant are obtained. 

2. Enumerating polygons 

The enumeration techniques that we used are based on those used by Enting (1980) 
in counting square lattice polygons of up to 38 steps. There are two separate com- 
binatorial aspects involved in this approach. The first problem is to enumerate all 
polygons of a particular class that can be contained within a rectangle of a given size. 
The second problem is to construct a linear combination of these finite-rectangle 
enumerations that gives the correct enumeration for the infinite lattice. 

The enumerations for the finite rectangles are performed using transfer matrix 
techniques, based on the concept of building up a rectangular array one site at a time. 
In order to perform the enumeration as efficiently as possible, the enumerations are 
performed for rectangles whose width is not greater than their length and the construc- 
tion is based on taking each particular width and adding columns of sites so as to 
extend the length. This approach minimises the size of the vectors on which the transfer 
matrices operate. The enumerations for rectangles whose width exceeds their length 
is obtained using the symmetry of the lattice. For each rectangle, what is counted is 
the number of polygons that span the full length of the rectangle and which obey any 
special constraints for the particular lattice. The polygons are not required to span 
the full width of the rectangles. This simplifies the transfer matrix method of enumer- 
ation but it does introduce an asymmetry that must be considered when reconstructing 
the final infinite lattice enumeration. 

In enumerating the polygons, the ‘self-avoiding’ constraint and the special con- 
straints on the directed lattice are ‘local’ constraints that are readily embodied in a 
transfer matrix that builds on one lattice site and up to two steps of the polygon at 
each iteration. There is also a ‘global’ requirement that the resulting graphs consist 
of a single component. This can be ensured by 

(i) requiring that all graphs span the rectangle so that it is impossible to generate 
a sequence of disjoint polygons along the length of the rectangle; 

(ii) specifying the connectivities of the free ends of the graphs as they are generated 
so that it is forbidden to complete any single polygon component if the partially 
constructed graph has free ends from which another disconnected component can be 
constructed. 
In order to specify the connectivities of the loops of the partially constructed polygons, 
it is sufficient to label the ends with 1 or 2 according to whether the end is the first or 
second end of the loop encountered when traversing the width of the rectangle. The 
various possible combinations are shown in figure 6 of Enting (1980) and these 
combinations lead to the rules shown in figure 3 of this paper. These rules embody 
transformations of the original problems. For the L lattice, we count square lattice 
polygons that change direction at every site. On the Manhattan lattice we count square 
lattice polygons restricted so that, on half the sites, the vertices are one of the four 
forms shown in figure 2 ( a )  while on the other half, the vertices are one of the four 
types shown in figure 2( b ) .  
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Figure 2. ( a )  The four types of junction allowed at type 0 sites on Manhattan lattice 
polygons. ( b )  The junctions allowed at type 1 sites of Manhattan lattice polygons. 

To show the equivalence in the L lattice case, every L lattice polygon corresponds 
to one possible square lattice polygon with a turn at each vertex, and every square 
lattice polygon that does have a turn at each vertex can be oriented consistently with 
the L lattice by following the orientation from any one of its steps. 

In the Manhattan lattice case, the argument is similar in that every Manhattan 
lattice polygon is a square lattice polygon and will have its sites alternating between 
the types shown in figures 2 ( a )  and ( b ) .  Any square lattice graph that obeys these 
constraints can be oriented in a manner consistent with the Manhattan lattice by taking 
the orientations of the pair of edges that meet at any right angle turn, so long as the 
two types of site shown in figure 2 are assigned in a manner consistent with the arrows 
as in figure 1. Formally at least, it is necessary to construct two sets of rectangles in 
the Manhattan lattice enumeration, those starting with type 0 sites and those starting 
with type 1 sites. As the rectangles are built up it is necessary to keep track of the 
type of the site that is currently being added so that the rules shown in figure 3 can 
be applied. 

Figure 3. The configuration of edges that can be built onto a site, given the various possible 
existing edges at that site. x denotes an input which is either not possible in that case or 
for which there is no allowed continuation. ‘Accumulate’ means that this configuration 
cannot contribute to larger rectangles but will contribute for the current length if the partial 
graph has no free ends. ‘relared’: this junction will have changed the loop connectivity 
and other edges must be relabelled. The labels 1, 2 define the connectivity (see Enting 
1980). * denotes configurations that are forbidden in the bottom row of a rectangle. 
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The transfer matrix formalism enumerates the polygons by building up vectors of 
generating functions. A line is drawn across the width of the rectangle as shown in 
figure 7 of Enting (1980). Each possible way in which the loop edges can cross this 
line, and each possible labelling of these intersections with 1 and 2,  is assigned to a 
distinct vector component. The combinations in figure 3 show which new sets of 
intersections become possible when a single site (shown as 0 )  is added. These new 
configurations make a contribution to the new vector component that is equal to the 
'old' component multiplied by x to the power of the number of new edges (i.e. x", x i  
or x 2 ) .  Detailed examples of the use of generating functions are given by Enting 
(1980). The last column of table 2 of Enting (1980) gives the number of vector 
components needed for various widths of rectangles. (Note that the widths specified 
in that table are numbers of sites, not numbers of steps as used below.) 

For the second part of the procedure, the basic combinatorics for combining 
generating functions for finite rectangles was given by Enting (1980). If g m n ( x )  is the 
generating function for all polygons that fit into an m x n rectangle but not into any 
smaller rectangle, then the generating function for the number of square lattice polygons 
per lattice site is 

which will correctly enumerate all polygons of up to 2 k  steps. This approximation 
can be rewritten as 

where 

a m m  = 1, m s p ,  ( 2 . 4 ~ )  

a m n  = 2,  ( 2 . 4 b )  

Qmn = 0, otherwise. ( 2 . 4 ~ )  

m < n, m + n s 2 p +  1, 

The transfer matrix formalism defined above actually calculates G m n ( x )  which is the 
generating function for polygons that fit into an m X n rectangle but not into any m x p  
rectangle for p < n. Thus 

This can be inverted to give 

Substituting into ( 2 . 3 )  gives 

n: m + n = 2 p +  I 
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where 

( 2 . 8 ~ )  

( 2 . 8 b )  

( 2 . 8 ~ )  

C m , n  = -2 ,  ( 2 . 8 d )  

C m , n  = 0, otherwise. ( 2 . 8 e )  

(Note that the condition m < n in ( 2 . 8 d )  was incorrectly given as m S n by Enting 
(1980).) 

Expression ( 2 . 7 )  will correctly enumerate square lattice polygons of up to 4p + 2 
steps. For the L lattice all polygons have 4n steps and so the largest polygons correctly 
enumerated by ( 2 . 7 )  are those of 4p steps. However, on the L lattice, expression (2 .7)  
also enumerates all but ( p .- 1) of the polygons of (4p + 4) steps and so the series can 
be extended by applying the simple correction of p - 1. The p - 1 graphs that have to 
be added explicitly are most easily described in terms of square lattice graphs derived 
from them by linking every second site to give a polygon of 2p + 2 steps. These square 
lattice graphs are simple rectangles. Each L lattice graph corresponds to two square 
lattice graphs and each square lattice rectangle corresponds to two L lattice graphs, 
except for the 1 x p  and p x 1 rectangles which each give only one L lattice polygon. 
Thus p possible rectangles give p - 1 distinct L lattice graphs that fit into a ( p  + 1) x 
( p +  1) square on the L lattice but not into any smaller rectangle. We have explicitly 
checked this argument by applying our procedure for evaluating ( 2 . 7 )  using various 
values of p and comparing the results with our final series. In each case the (4p + 4)th 
term was ( p  - 1)  less than the term obtained using larger values of p .  

A different combinatorial scheme was used on the Manhattan lattice, firstly because 
of the need to distinguish type 0 and 1 sites and secondly to make use of the fact that 
the g',"!, and g:!, (generalisations of g,,, labelled according to the type of the top left 
site) are zero unless both m and n are odd. If G,, is also generalised to G',": and 
Gt!, labelled according to the type of the top left site then 

m < n, m + n = 2p, 

Because both types of rectangle are included, &(x) thus generates the number of L 
lattice polygons per two lattice sites. 

Equation ( 7 . 5 )  generalises to 

(2.10) 

Inverting (2 .10)  gives 

with 

( 2 . 1 2 4  b )  

(2 .12c)  

Because only odd m, n have non-zero g,,, if the G,, can be evaluated up to some 
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maximum width p ,  expression (2.9) is most efficiently used in the form 

u2p+2(x) = amn(g!2+ g ! 2 ) ,  p odd, 
add m s p  

n :  m + n s 2 p + 2  
n odd 

(2.13) 

which correctly enumerates polygons of up to (4p+4) steps. Substituting (2.1 1 )  into 
(2.13) gives 

(2.14) 

( 2 . 1 5 ~ )  

dm-2.m odd m d p, (2.1 5 b )  

dm,2p+2-m = 2, odd m S p ,  (2 .15~)  

dm.*p+~-m-*, = (-11’49 o d d m c p , j > l , 2 p + 2 - m - 2 j > l ,  
(2.15d) 

dm,n 5 0, otherwise. (2.15e) 

The calculations were performed using the residue arithmetic of integers modulo 
various primes. To reconstruct the counts required 4, 2 and 2 primes for square, L 
and Manhattan lattices respectively. (The primes used were the largest successive 
primes less than 2j5.) In each case the maximum width (i.e. the quantity p in expressions 
(2.7) and (2.13)) was 11 steps, which meant that 418 35 vector components were 
required (Enting 1980) and that the series were obtained correctly to 46, 48 and 48 
step polygons for the square, L and Manhattan lattices. As discussed above, to 
enumerate the 48 step polygons on the L lattice it was necessary to add 10 to the 
enumeration obtained by evaluating expression (2.13) with p = 1 1. 

The calculations were performed using a Perkin-Elmer 3220 minicomputer at the 
University of Newcastle running Unix level 7. Approximately 5 days was required for 
each prime for the square lattice and 1 day for the L lattice calculations. The Manhattan 
lattice run took 2 days because both GE!, and Gi!, were calculated. These times are 
a reflection of the limited hardware at our disposal, more than 60% of the time being 
taken by disc access. With a virtual memory operating system we would expect the 
times to be at least halved. 

The times taken for the directed lattice appear relatively long, considering the small 
numbers of graphs that are actually enumerated. These could have been reduced if 
the programs had been modified to take account of the fact that all the directed lattice 
polygons have 4n steps. In addition it must be remembered that the amount of 
computation required to enumerate polygons by direct construction tends to grow as 
the number of self-avoiding walks rather than as the number of polygons. This type 
of behaviour would suggest that the transfer matrix approach may not be the most 
efficient way of enumerating directed lattice polygons-we chose this method because 
it involved only minor modifications to existing programs. We have not been able to 
find a way of exploiting the relation between L lattice polygons of 4n steps and square 
lattice polygons of 2 n  steps. In order to apply this relation, additional information is 
required in the square lattice enumeration. This increases the size of the vectors of 
partial generating functions so that they are essentially as large as the vectors required 
when enumerating L lattice polygons by the techniques described above. 

The resulting polygon counts are shown in table 1. 
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Table 1. Coefficients of polygon generating function ofthe square, Manhattan and L lattices. 

n Square Manhattan L 

4 
6 
8 
IO 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 

1 
2 
7 

28 
I24 
588 

2 938 
I5 268 
81 826 

449 572 
2 521 270 

I4 385 376 
83 290 424 

488 384 528 
2 895 432 660 

17 332 874 364 
104 653 427 012 
636737003384 

3 900 770 002 646 
24045500114388 

149059814328236 
928 782 423 033 008 

I 
0 
2 
0 
7 
0 

32 
0 

168 
0 

970 
0 

5 984 
0 

38 786 
0 

261 160 
0 

1 812 630 
0 

12 895 360 
0 

93 638 634 

~ 

1 
0 
0 
0 
1 
0 
2 
0 
9 
0 

36 
0 

154 
0 

684 
0 

3 128 
0 

14 666 
0 

70 258 
0 

342 766 

3. Analysis of series 

It follows from Nienhuis’s (1982, 1984) results and scaling laws that the polygon 
generating function (PGF) should have a cusp-like singularity with an exponent of $. 
That is, we expect 

P ( x ) =  1 ~ ~ , x ’ ” - A ( x ) + B ( x ) ( ~  - p ’ ~ ’ ) ’ - ~ +  C(X)(l - p ’ ~ ’ ) ’ - ~ + ~  (3.1) 
n 2  I 

where a = f ,  and A, B and C are even functions of x regular in the physical disc 
Ix’1 S p-’. A # 1 is a confluent correction exponent and P is an even function of x 
due to the loose-packed lattice structure. Initially, we will confine our analysis to the 
square lattice PGF. 

Pad6 approximants cannot be used on (3.1) directly, due to their inability to handle 
cusp-like singularities (see e.g. Gaunt and Guttmann 1974). Differentiating the series 
three times sharpens the physical singularity, so it now diverges at x2 = p-’ with an 
exponent of (- 1 - a). Unfortunately, dlog Padis are only slowly convergent, and 
enable us to estimate only p-2 = 0.1437 f 0.0001 with 1 + Q = 1.5 1 f 0.02. 

The recurrence relation method (Guttmann and Joyce 1972) can be used for 
cusp-like singularities such as (3.1 ). The second-order recurrence relations can 
accommodate the first two terms in (3.1 ), while third-order recurrence relations can 
additionally accommodate any confluent term. The estimates of p2 and 2 - a as found 
by this method are shown in table 2. Rapid convergence is obtained, and we make 
the estimates p-’ = 0.143 68 f 0.0001, 2 - a = 1 SO0 f 0.005. 
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Table 2. Analysis of square lattice polygon generating function by recurrence relation 
method. n is the degree of the polynomial multiplying each coefficient in the recurrence 
method. 

2nd order 3rd order 
n F - 2  2-a  K 2  2-a 

2 - - 0. I43 006 1.6616 
3 0.143 031 1.6401 0.143 658 1.5070 
4 0.143 895 1.4250 0.143 683 1.4986 
5 0.143 672 1.5048 
6 0.143 681 1 so03 

Both unbiased methods therefore support the result a = 4. If we plot estimates of 
p-2 against estimates of 2 - a from the recurrence relation method results, we obtain 
a seemingly linear relationship, just as found for pole-residue plots in the Pad6 method. 
In this way, we estimate that if a =;, p-’ =0.143 6810 or p =2.638 155. Our earlier 
estimate (Guttmann 1984), based on an analysis of the chain generating function, was 
p = 2.638 1 f 0.0002, in excellent agreement with the above, while Berretti and Sokal 
(1985) have found 2.638 20 f 0.000 34 from Monte Carlo analysis. 

An alternative unbiased extrapolation method that appears to be very effective is 
the Levin u-transform. This appears to have been first used in a similar context by 
Barber et a1 (1984), and is discussed at some length by Smith and Ford (1979), who 
have reviewed 1 1 different ‘standard’ numerical methods for sequence extrapolation, 
and found the Levin transform the most successful general purpose method. In that 
method, if we wish to extrapolate a sequence { ~ k ~ ’ } ~ = ~ ,  we do so by forming sequences 
{ a n  ( k )  } n = o  N - 2 k  9 k = 1,2,3, .  . . , defined by 

where 

A Y n  =yfl+1 -Yn.  

In our case we take a ‘ , O ) = ~ ~ , / p ~ , , - ~ ,  the ratio of successive coefficients in (3.1). The 
results are shown in table 3. 

The sequence {ai2)} is decreasing, while {a(n3)} is increasing. The last entries in each 
case appear to provide ‘bounds’ so that 6.9593 < p2  < 6.9602 or p = 2.6381 *0.0001 in 
precise agreement with our biased analysis of the SAW series. 

The Levin transform method can also be used to provide biased estimates as 
follows. Since we exfject the ratios p2nlp2n-2 - pz[ 1 +(a -3)/n], we take a:’) = 
(pzn/p2,,-2)/[1 +(a -3)/n]. Subsequent sequences are also shown in table 3. The 
elements of {a(,Z’} are increasing, but the rate of increase is rapidly slowing. The last 
entries of {a i3) }  are stable at p2 = 6.959 86, and we estimate p2 = 6.959 86 f 0.000 13 or 
p = 2.638 155 f 0.000 025, in precise agreement with the recurrence relation method 
results previously quoted, and right in the middle of the current series and Monte 
Carlo estimates. The phenomenological renormalisation scheme of Derrida ( 198 1)  
gives p = 2.638 17 * 0.0002, which is now seen to be an extremely accurate estimate. 

Other biased methods tried include forming Pad6 approximants to the thrice 
differentiated series then raised to the power (i). Many approximants were defective, 
but those that were not gave steadily increasing estimates of p-2,  so yielding p2 < 6.9607. 
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Table 3. Estimates of p2 for the square lattice polygon generating function from the Levin 
transformed sequence of ratios. Biased estimates assume a critical exponent of -5. 

n 
- 

5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

a(o, 

4.741 935 
4.996 599 
5.196 732 
5.359 314 
5.494 244 
5.608 156 
5.705 607 
5.789 937 
5.863 634 
5.928 592 
5.986 28 1 
6.036 858 
6.084 244 
6.126 187 
6.164 296 
6. I99 073 
6.230 938 
6.260 241 

Unbiased 
a‘,” a ( 2 )  

9.213 790 7.239 213 
8.827 329 7.123 822 
8.352 835 7.083 897 
8.045 016 6.957 396 
7.797 591 6.976 776 
7.634 006 6.966 314 
7.5 13 284 6.967 643 
7.423 546 6.963 337 
7.353 761 6.962 404 
7.298 798 6.961 456 
7.254 649 6.960 973 
7.218 662 6.960 595 
7.188 924 6.960 363 
7.164065 6.960 199 
7.143 067 6.960 084 
7.125 167 

6.520 660 
7.005 481 
6.723 806 
7.031 530 
6.935 756 
6.972 115 
6.947 781 
6.958 678 
6.957 365 
6.958 725 
6.958 706 
6.959 13 1 
6.959 269 
6.959 391 

a Lo’ 

9.483 87 I 
8.565 598 
8.083 806 
7.795 365 
7.607 415 
7.477 542 
7.383 727 
7.313 605 
7.259 737 
7.217 416 
7.183 538 
7.155 979 
7.133 252 
7.1 14 282 
7.098 280 
7.084 655 
7.072 956 
7.062 836 

Biased 
a‘” a ( 2 )  

7.004 695 6.909 41 1 
6.967 804 6.927 282 
6.954013 6.944636 
6.951 138 6.944949 
6.949 431 6.951 332 
6.949 912 6.953 547 
6.950 760 6.955 722 
6.951 835 6.956 669 
6.952 812 6.957 495 
6.953 698 6.958 042 
6.954 412 6.958 453 
6.955 141 6.958 750 
6.955 7 15 6.958 976 
6.956 208 6.959 148 
6.956 631 6.959 281 
6.956 995 

a ( 3 )  

6.948 877 
6.969 233 
6.945 490 
6.963 566 
6.958 400 
6.960 986 
6.959 2 I2 
6.959913 
6.959 778 
6.959 861 
6.959 841 
6.959 864 
6.959 866 
6.959 869 

Biased Neville table extrapolation for p2 (which implicitly assumes the absence of 
any confluent term) gave p2 = 6.9597 * 0.0009, or p = 2.638 12 * 0.000 17. 

In order to estimate the value of any possible confluent exponent A, we tried all 
the standard biased methods, with p2 = 6.959 86. The recurrence relation method gave 
no useful results, due to overflows in solving associated polynomial equations. The 
Baker-Hunter (1973) transformation was a little more successful, and gave weak 
evidence of a second exponent A = 0.75 * 0.16. The Adler-Moshe-Privman method 
(1982) was instructive, and with A=0.84, estimates of a were very stable at a = 
0.4997*0.0011, where the quoted error is *1 standard deviation, based on a sample 
of the last nine table entries, and taking p = 2.638 155. With p = 2.638 14, and A = 0.835, 
estimates of a were even better, at a = 0.5000 f 0.0008. Repeating this analysis for the 
SAW series, for which we expect y = 43/32 = 1.343 75, we found y = 1.3434*0.0003 
with p = 2.638 155 and A =0.84, and y = 1.3441 *0.0003 with p = 2.638 14 and A = 
0.835. 

This accords well with an earlier analysis of the triangular lattice SAW series 
(Guttmann 1984), in which we pointed out there was some evidence of a confluent 
exponent with a value of A = 0.84. 

Thus we conclude that the Adler-Moshe-Privman method does consistently indicate 
a correction to scaling exponent of A50.84. It is unfortunate that no other method 
enables a similar conclusion to be drawn. Indeed, both Privman (1984) and Majid et 
a1 (1983) find evidence for A = 0.65. 

Turning now to the PGF for the Manhattan and L lattices, we observe that the small 
number of coefficients makes conventional methods of analysis difficult, in the sense 
that convergence is rather slow. We have therefore adopted an alternative technique, 
which relies on the assumption that the asymptotic form of the PGFS for the Manhattan 
and L lattices is the same as that for the square lattice. Thus if p : ,  p r  and p k  denotes 
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the coefficients of x n  in the PGF for the square, Manhattan and L lattice respectively, 
we have 

P Z n  - KSF4Snl pan - KMp.",", P4Ln - KLP4Ln, n = l , 2 , 3 , 4  , . . . ,  (3.3) 

and hence 

M 

n = 1 , 2 , 3 , 4  , . . . ,  
(3.4) = (P4",/p4"n)'/"" - ( ~ s / ~ M ) ( K s / K M ) ' / ~ ~ ,  

rk= - ( F S / ~ L ) ( K S / K L ) ' / ~ ~ .  

To estimate ps/pM and psIpL we form the sequences 

The sequences { s y } ,  {sk} so obtained can be expected to converge in a manner 
determined by the confluent and analytic correction terms. We have found that the 
Levin u-transform gives a reasonably well converged sequence of estimates, and these 
results are shown in table 4, where we have taken {s?} and {sk} as {a?'} in (3.2). 
From them we estimate 

pslpM = 1.5225 f 0.0004, p s / p L  = 1.685 * 0.002. (3.6) 

Table 4. Estimates of I* for the Manhattan and L lattice polygon generating function as 
a multiple of p for the square lattice. 

Manhattan L lattice 
n a',"' a'" a '," a (o l  a ( l l  a(,Z' 

3 1.499 906 
4 1.508 845 
5 1.517645 
6 1.519905 
7 1.521 209 
8 1.521 804 
9 1.522 131 

I O  1.522294 
I I  1.522374 
12 1.522407 

1.471 304 
1.521 806 
1.524 996 
1.522 692 
1.522810 
1.522 549 
1.522491 
1.522 438 

1.517692 1.513331 2.051 544 
1.357 874 1.521 201 1.855 240 
1.521 926 1.527 200 1.577 273 
1.522 983 1.522 266 1.665 969 
1.522 396 1.522 478 1.667 014 
1.522448 1.522409 1.672614 
1.522416 1.676 708 

1.679 144 
1.680 570 
1.68 1 553 

2.272609 1.546 171 1.668 264 
1.656 530 1.667 387 1.666 664 
1.667241 1.666441 1.666885 
1.665 770 1.667 450 1.664 857 
1.701 048 1.679386 1.686238 
1.685 005 1.682 384 1.676 820 
1.683 671 1.697 737 
1.685 058 

Similar though less well converged estimates are obtained from Neville table extrapola- 
tion (not shown). Using our estimate of ps=2.638 155 we find 

pM = 1.7328 * 0.0005, p L =  1.5657 *0.0019. (3.7) 
These are in excellent agreement with the estimates (Guttmann 1983) based on the 
chain generating functions of the two series of p M =  1.7340*0.0015 and p L =  
1.5658 * 0.00 lo. 

In the preceding analysis for pM and pL, the discerning reader will have noticed 
that we require the coefficient p:8, and we have only obtained the square lattice PGF 
up to the coefficient in pZ6. To estimate p4"g we have used the recurrence relation 
method, discussed above, to predict the next coefficient from the available coefficients. 
In this way we estimate pZ8 = 5 814 401 613 000 000 which we expect to be accurate to 
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the 10 quoted significant digits. This estimate of accuracy which follows from the 
prediction of known coefficients is rather conservative and is more than sufficient for 
the analysis of p M  and pL. 

4. Conclusion 

We have substantially extended the PGF series for the square, L and Manhattan lattices, 
by using the finite lattice method and its extensions that allow directed lattices to be 
treated. 

Analysis of the extended series allows accurate estimates of the connective constant 
to be made, particularly for the square lattice. For the three lattices we find 

ps = 2.638 155 * 0.000 025, p L =  1.5657*0.0019, 
(4.1) 

/1.M = 1.7328 f 0.0005. 

Our analysis also provides strong support for Nienhuis’s (1982, 1984) results, which, 
coupled with scaling, imply that Q = exactly, and gives some evidence, unfortunately 
based on only one method, for a correction to scaling exponent of A = 0.84. It would 
be very worthwhile if the square lattice SAW series could be extended by three or four 
terms in order to check this result. 

In our earlier analysis (Guttmann 1984), a number of possible exact forms for p 
( S Q )  were given. The only one to survive our refined estimate is p = - 1 = 
2.638 140. . . , which we believe has the status of an interesting possibility, and useful 
mnemonic. 
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